Abstract

We consider efficient image transmission via time-varying channels. To improve the performance, we propose a new distributed compressive sensing (CS) scheme that can leverage similar images in the cloud. It is featured by channel SNR and bandwidth scalability, high efficiency, and low encoding complexity. For each image, a compressed thumbnail is first transmitted after forward error correction (FEC) and modulation to retrieve similar images and generate a side information (SI) in the cloud. The residual image after subtracting the decompressed thumbnail is then coded and transmitted by CS through a very dense constellation without FEC. The linearly and ratelessly generated CS measurements make it capable of achieving both graceful quality degradation (GD) with the channel SNR and bandwidth scalability in a universal scheme. A mode decision and transform-domain power allocation are introduced for better bandwidth usage and protection against channel errors. At the decoder, a two-step CS decoding is performed to recover the residual signal, where both the local and nonlocal correlations within the image and that with the SI are exploited. Simulations on landmark images and an AWGN channel show that the received image quality gracefully increases with the channel SNR and bandwidth. Furthermore, it outperforms existing schemes both subjectively and objectively by up to 11 dB gains compared with the state-of-the-art transmission scheme with GD, i.e. SoftCast.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.