Abstract

This paper proposes a novel framework called Distributed Compressed Video Sensing (DISCOS) - a solution for Distributed Video Coding (DVC) based on the recently emerging Compressed Sensing theory. The DISCOS framework compressively samples each video frame independently at the encoder. However, it recovers video frames jointly at the decoder by exploiting an interframe sparsity model and by performing sparse recovery with side information. In particular, along with global frame-based measurements, the DISCOS encoder also acquires local block-based measurements for block prediction at the decoder. Our interframe sparsity model mimics state-of-the-art video codecs: the sparsest representation of a block is a linear combination of a few temporal neighboring blocks that are in previously reconstructed frames or in nearby key frames. This model enables a block to be optimally predicted from its local measurements by l1-minimization. The DISCOS decoder also employs a sparse recovery with side information to jointly reconstruct a frame from its global measurements and its local block-based prediction. Simulation results show that the proposed framework outperforms the baseline compressed sensing-based scheme of intraframe-coding and intraframe-decoding by 8 – 10dB. Finally, unlike conventional DVC schemes, our DISCOS framework can perform most encoding operations in the analog domain with very low-complexity, making it be a promising candidate for real-time, practical applications where the analog to digital conversion is expensive, e.g., in Terahertz imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.