Abstract
This letter studies a distributed collision avoidance control problem for a group of rigid bodies on a sphere. A rigid body network, consisting of multiple rigid bodies constrained to a spherical surface and an interconnection topology, is first formulated. In this formulation, it is shown that motion coordination on a sphere is equivalent to attitude coordination on the 3-dimensional Special Orthogonal group. Then, an angle-based control barrier function that can handle a geodesic distance constraint on a spherical surface is presented. The proposed control barrier function is then extended to a relative motion case and applied to a collision avoidance problem for a rigid body network operating on a sphere. Each rigid body chooses its control input by solving a distributed optimization problem to achieve a nominal distributed motion coordination strategy while satisfying constraints for collision avoidance. The proposed collision-free motion coordination law is validated via simulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.