Abstract

In this paper, a collaborative beamformer (CB) is considered to achieve a dual-hop communication from a source to a receiver, through a wireless network comprised of K independent terminals. Whereas previous works neglect the scattering effect to assume a plane-wave single-ray propagation channel termed here as monochromatic (with reference to its angular distribution), a multi-ray channel termed as polychromatic due to the presence of scattering is considered, thereby broadening the range of applications in real-world environments. Taking into account the scattering effects, the weights of the so-called polychromatic CB (P-CB) are designed so as to minimize the received noise power while maintaining the desired power equal to unity. Unfortunately, their derivation in closed-form is analytically intractable due to the complex nature of polychromatic channels. However, when the angular spread (AS) is relatively small to moderate, it is proven that a polychromatic channel may be properly approximated by two rays and hence considered as bichromatic. Exploiting this fact, we introduce a new bichromatic CB (B-CB) whose weights can be derived in closed-form and, further, accurately approximate the P-CB's weights. Yet these weights, which turn out to be locally uncomputable at every terminal, are unsuitable for a distributed implementation. In order to circumvent this shortcoming, we exploit the asymptotic expression at large K of the B-CB whose weights could be locally computed at every terminal and, further, well-approximate their original counterparts. The performances of the so-obtained bichromatic distributed CB (B-DCB) and its advantages against the monochromatic DCB (M-DCB), which is designed without accounting for scattering, are analytically proved and further verified by simulations at practical values of K.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call