Abstract
Liquid hydrocarbons are often modelled with fixed, symmetric, atom-centred charge distributions and Lennard-Jones interaction potentials that reproduce many properties of the bulk liquid. While useful for a wide variety of applications, such models cannot capture dielectric effects important in solvation, self-assembly, and reactivity. The dielectric constants of hydrocarbons, such as methane and ethane, physically arise from electronic polarisation fluctuations induced by the fluctuating liquid environment. In this work, we present non-polarisable, fixed-charge models of methane and ethane that break the charge symmetry of the molecule to create fixed molecular dipoles, the fluctuations of which reproduce the experimental dielectric constant. These models can be considered a mean-field-like approximation that can be used to include dielectric effects in large-scale molecular simulations of polar and charged molecules in liquid methane and ethane. We further demonstrate that solvation of model ionic solutes and a water molecule in these fixed-dipole models improve upon dipole-free models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.