Abstract
In this paper, the novel Distributed Bayesian (D-Bay) algorithm is presented for solving multi-agent problems within the Continuous Distributed Constraint Optimization Problem (C-DCOP) framework. This framework extends the classical DCOP framework towards utility functions with continuous domains. D-Bay solves a C-DCOP by utilizing Bayesian optimization for the adaptive sampling of variables. We theoretically show that D-Bay converges to the global optimum of the C-DCOP for Lipschitz continuous utility functions. The performance of the algorithm is evaluated empirically based on the sample efficiency. The proposed algorithm is compared to state-of-the-art DCOP and C-DCOP solvers. The algorithm generates better solutions while requiring fewer samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.