Abstract

This paper addresses the attitude synchronization problem in multi-agent systems with directed and switching interconnection topologies. Two cases for the synchronization problem are discussed under different assumptions about the measurable information. In the first case the agents can measure their rotations relative to a global reference coordinate frame, whilst in the second case they can only measure the relative rotations between each other. Two intuitive distributed control laws based on the axis–angle representations of the rotations are proposed for the two cases, respectively. The invariance of convex balls in SO(3) is guaranteed. Moreover, attitude synchronization is ensured under the well-known mild switching assumptions, the joint strong connection for the first case and joint quasi-strong connection for the second case. To show the effectiveness of the proposed control schemes, illustrative examples are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.