Abstract
This paper is concerned with the problem of distributed estimation fusion over peer-to-peer asynchronous sensor networks with random packet dropouts. A distributed asynchronous fusion algorithm is proposed via the covariance intersection method. First, local estimator is developed in an optimal batch fashion by constructing augmented measurement equations. Then the fusion estimator is designed to fuse local estimates in the neighborhood. Both local estimator and fusion estimator are developed by taking into account the random packet losses. The presented estimation method improves local estimates and reduces the estimate disagreement. Simulation results validate the effectiveness of the proposed distributed asynchronous fusion algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.