Abstract
Unmanned aerial vehicles (UAVs) for wireless communications have rapidly grown into a research hotspot as the mass production of high-performance, low-cost, and intelligent UAVs becomes practical. In the meantime, the fifth generation (5G) wireless communication and Internet-of-Things (IoT) technologies are being standardized and planned for global deployment. During this process, UAVs are becoming an important part of 5G and IoT, and expected to play a crucial role in enabling more functional diversity for wireless communications. In this paper, we first present a summary of mainstream UAVs and their use in wireless communications. Then, we propose a hierarchical architecture of UAVs with multilayer and distributed features to facilitate the integration of different UAVs into the next-generation wireless communication networks. Finally, we unveil the design tradeoffs with the consideration of power transfer, wireless communication, and aerodynamic principles. In particular, empirical models and published measurement data are used to analyze power transfer efficiency, and meteorological impacts on UAVs enabled next-generation wireless communications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.