Abstract

This paper presents analysis and design results for distributed consensus algorithms in multi-agent networks. We consider continuous consensus functions of the initial state of the network agents. Under mild smoothness assumptions, we obtain necessary and sufficient conditions characterizing any algorithm that asymptotically achieves consensus. This characterization is the building block to obtain various design results for networks with weighted, directed interconnection topologies. We first identify a class of smooth functions for which one can synthesize in a systematic way distributed algorithms that achieve consensus. We apply this result to the family of weighted power mean functions, and characterize the exponential convergence properties of the resulting algorithms. We establish the validity of these results for scenarios with switching interconnection topologies. Finally, we conclude with two discontinuous distributed algorithms that achieve, respectively, max and min consensus in finite time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.