Abstract

This paper investigates the problem of finding a fixed point for a global nonexpansive operator under time-varying communication graphs in real Hilbert spaces, where the global operator is separable and composed of an aggregate sum of local nonexpansive operators. Each local operator is only privately accessible to each agent, and all agents constitute a network. To seek a fixed point of the global operator, it is indispensable for agents to exchange local information and update their solution cooperatively. To solve the problem, two algorithms are developed, called distributed Krasnosel’skiĭ–Mann (D-KM) and distributed block-coordinate Krasnosel’skiĭ–Mann (D-BKM) iterations, for which D-BKM is a block-coordinate version of D-KM in the sense of randomly choosing and computing only one block-coordinate of local operators at each time for each agent. It is shown that the proposed two algorithms can both converge weakly to a fixed point of the global operator. Meanwhile, the designed algorithms are applied to recover the classical distributed gradient descent (DGD) algorithm, devise a new block-coordinate DGD algorithm, handle a distributed shortest distance problem in the Hilbert space for the first time, and solve linear algebraic equations in a novel distributed approach. Finally, the theoretical results are corroborated by a few numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.