Abstract
This paper is concerned with distributed computation of several commonly used centrality measures in complex networks. In particular, we propose deterministic algorithms, which converge in finite time, for the distributed computation of the degree, closeness and betweenness centrality measures in directed graphs. Regarding eigenvector centrality, we consider the PageRank problem as its typical variant, and design distributed randomized algorithms to compute PageRank for both fixed and time-varying graphs. A key feature of the proposed algorithms is that they do not require to know the network size, which can be simultaneously estimated at every node, and that they are clock-free. To address the PageRank problem of time-varying graphs, we introduce the novel concept of persistent graph, which eliminates the effect of spamming nodes. Moreover, we prove that these algorithms converge almost surely and in the sense of $L^p$. Finally, the effectiveness of the proposed algorithms is illustrated via extensive simulations using a classical benchmark.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.