Abstract
We propose an algorithm for maximizing the lifetime of a wireless sensor network when there is a mobile sink and the underlying application can tolerate some amount of delay in delivering the data to the sink. The algorithm is distributed, and in addition, mostly uses local information. Such an algorithm can be implemented by parallel and/or distributed execution and the overhead of message passing is low. It is also possible to embed the algorithm into a network protocol so that the sensor nodes and the sink can run it directly as part of the network operation. We give a proof of the algorithm's optimality and the boundedness of the queue sizes, both in the long-run average sense. The proof is based on analyzing a Lyapunov drift.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.