Abstract
In this article, the problem of distributed finite-time consensus control for a class of stochastic nonlinear multiagent systems (MASs) (with directed graph communication) in the presence of unknown dynamics of agents, stochastic perturbations, external disturbances (mismatched and matched), and input saturation nonlinearities is addressed and studied. By combining the backstepping control method, the command filter technique, a finite-time auxiliary system, and artificial neural networks, innovative control inputs are designed and proposed such that outputs of follower agents converge to the output of the leader agent within a finite time. Radial-basis function neural networks (RBFNNs) are employed to approximate unknown dynamics, stochastic perturbations, and external disturbances. To overcome the complexity explosion problem of the conventional backstepping method, a novel finite-time command filter approach is proposed. Then, to deal with the destructive effects of input saturation nonlinearities, the finite-time auxiliary system is designed and developed. By mathematical analysis, it is proven that the mentioned MAS (injected by the proposed control inputs) is semiglobally finite-time stable in probability (SGFSP) and all consensus tracking errors converge to a small neighborhood of the zero during a finite time. Finally, a numerical simulation onto a group of four single-link robot manipulators is carried out to illustrate the effectiveness of the suggested control scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Neural Networks and Learning Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.