Abstract

Distributed adaptive perimeter control is a promising paradigm for controlling large-scale road networks. Recently, coordinated distributed perimeter control of interconnected urban road regions has been developed in Haddad and Mirkin (2015). A Macroscopic Fundamental Diagram (MFD)-based model was utilized to describe the aggregate traffic flow dynamics, and model reference adaptive control was implemented to control the distributed perimeter controllers. Previous works, including Haddad and Mirkin (2015), implicitly postulated that during the control process, all needed information for computing are obtained in real time and processed instantly. However, collecting, processing, and uploading traffic data in a large-scale urban road networks impose time delays. Towards developing realistic aggregate models and improving perimeter control algorithms, the current paper aims at addressing the existence of such time delays. Hence, delayed state interconnections are incorporated in the dynamic equations to model data processing and communication delays between surrounding interconnected regions. Based on developed model, distributed perimeter control scheme in presence of time delays in interconnections is implemented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call