Abstract

In this article, we investigate the distributed adaptive consensus problem of parabolic partial differential equation (PDE) agents by output feedback on undirected communication networks, in which two cases of no leader and leader-follower with a leader are taken into account. For the leaderless case, a novel distributed adaptive protocol, namely, the vertex-based protocol, is designed to achieve consensus by taking advantage of the relative output information of itself and its neighbors for any given undirected connected communication graph. For the case of leader-follower, a distributed continuous adaptive controller is put forward to converge the tracking error to a bounded domain by using the Lyapunov function, graph theory, and PDE theory. Furthermore, a corollary that the tracking error tends to zero by replacing the continuous controller with the discontinuous controller is given. Finally, the relevant simulation results are further demonstrated to demonstrate the theoretical results obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.