Abstract
Multiple Autonomous Underwater Vehicles (AUV) can complete complex ocean exploration missions cooperatively. This paper proposes a containment control algorithm under time-varying constraints by using a neural network for control of multiple benthic AUVs which are called the Ocean Bottom Flying Node (OBFN) systems. The multiple OBFNs in the presence of nonlinear model uncertainties are under the directed topology. First, we define the auxiliary variable and low-order filter. The anti-windup saturation auxiliary system is constructed in presence of the input saturation. Further, the adaptive law and neural network are designed to compensate environmental disturbances and systems model uncertainties, respectively. Moreover, in order to ensure the control performance of OBFN, an exponential boundary constraint is imposed which could constrain the system error convergent rates and bounds. Lyapunov stability theorem and graph theory are used to prove that the multiple OBFN systems are uniformly ultimately bounded. Finally, simulation results for multiple OBFNs illustrate the effectiveness of the proposed algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.