Abstract

SummaryThis paper studies the time‐varying output formation tracking (OFT) problems for linear heterogeneous multiagent systems with multiple leaders, where both the followers and the leaders can have nonidentical dynamics and dimensions. The existing results on formation tracking with multiple leaders depend on the assumption that each follower is well‐informed or uninformed, where the well‐informed follower has all the leaders as its neighbor. To remove this assumption, a novel OFT approach is presented using a distributed observer scheme. Firstly, based on the local estimation and the interaction with neighboring followers, a fully distributed observer is designed for each follower to estimate the dynamical matrices and the states of multiple leaders without requiring the well‐informed follower assumption. The convergence of the distributed observer is proved by using Lyapunov theory. Then, an adaptive algorithm is proposed to solve the regulator equations in finite time based on the estimation of the leaders' dynamical matrices. Furthermore, the desired time‐varying output formation of each follower is generated by a local active exosystem. A time‐varying OFT protocol is presented using the estimated states of multiple leaders, the online solutions of the regulator equations, and the desired formation vector generated by the local exosystem. It is proved that the outputs of the followers can not only realize the expected formation shape but also track the predefined convex combination of multiple leaders. Finally, a simulation example is given to verify the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.