Abstract
In this paper, we investigate the output synchronization of networked SISO nonlinear systems that can be transformed into semi-strict feedback form. Due to parameter uncertainty, the agents have heterogeneous dynamics. Combined backstepping method together with graph theory, we construct an augmented Laplacian potential function for analysis and a distributed controller is designed recursively for each agent such that its output can be synchronized to its neighbors' outputs. The distributed controller of each agent has three parts: state feedback of itself, neighborhood information transmitted through the network and adaptive parameter updaters both for itself and its neighbors. Moreover, distributed tuning function is designed to minimize the order of the parameter updater. It is proved that when the undirected graph is connected, all agents’ outputs in the network can be synchronized, i.e., cooperative output synchronization of the network is realized. Simulation results are presented to verify the effectiveness of the proposed controllers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.