Abstract
Distributed acoustic sensing (DAS) technology based on Rayleigh backscattering is experiencing a rapid development and leading itself into wider applications because of the unique capability of measuring sound and vibrations at all points along the sensing fiber. However, most implementations of DAS provide the position of detected sources as a function of distance within the one-dimensional axial space along the sensing fiber. A DAS system with the capability of two-dimensional (2D) and three-dimensional (3D) acoustic source localization in air is demonstrated that uses array signal processing to deal with the spatial correlation of the information measured by optical fiber. Preliminary work has demonstrated 2D acoustic source localization for multi-targets with a narrowband signal source of the same frequency and 3D position for a moving narrowband acoustic source. The results establish a new method which opens up new areas of applications of DAS such as location and identification for static, dynamic, and multiple targets in air or water.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.