Abstract
<p><strong>Spatial distribution and ecological risk analysis of Polycyclic Aromatic Hydrocarbons in Cilincing waters – Jakarta Bay</strong>. Within a few decades, Polycylic Aromatic Hydrocarbon (PAH) pollution increases in marine environment in seawater, sediment, and organism. Generally, this pollutant comes from industrial and household waste, agricultural runoff, shipping activities, and input from atmospheric deposition. This study aims to determine the concentration, spasial distribution, source, and ecological risks analysis in Cilincing waters, Jakarta Bay. Samples of seawater, total suspended solid (TSS), and sediment were collected on April 2019 at ten stations. Samples were stored at 4<sup>o</sup>C afterward analyzed in the laboratory. All samples were then extracted with dichloromethane and n-hexane solvents. They were then fractionated with n-pentane: dichloromethane, and the results were injected into a Gas Chromatography-Mass Spectrometer (GCMS) instrument. The highest concentration of PAH compounds in seawater, TSS, and sediment samples are 208.74 ng.L<sup>1-</sup>; 5.90 ng.L<sup>1-</sup>; and 63.63 ng.g<sup>1-</sup> dry weight (dw) respectively. The highest spatial distribution of PAHs in seawater and TSS samples were detected in station 1, 9, and 10, whilst in sediment sample was in station 5 and 6. The ratio of ∑Low Molecular Weight (LMW)/∑High Molecular Weight (HMW), Fluo/(Fluo + Pyr), and An/(An + Phe) revealed that the source of PAH pollution dominated from pyrogenic, especially petroleum combustion from vehicle engine. The total concentration of ∑PAH-9 in sediment was 31.21 ng.g<sup>1-</sup>dw which was lower than Effects Range Low (ERL), Effects Range Median (ERM), Threshold Effect Levels (TEL), and Probably Effect Levels (PEL) values referred to sediment quality guideline. These results were indicated low potential of causing an adverse biological effect.</p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.