Abstract

Despite consistent evidence showing that attention is a multifaceted mechanism that can operate at multiple levels of processing depending on the structure and demands of the task, investigations of the attentional blink phenomenon have consistently shown that the impairment in reporting the second of two targets typically occurs at a late, or post-perceptual, stage of processing. This suggests that the attentional blink phenomenon may represent the operation of a unique attentional mechanism that is not as flexible as other attentional mechanisms. To test whether the attentional blink is a fixed or flexible phenomenon, we manipulated first target task demands (i.e., difficulty) and measured the influence this had on processing a subsequently presented distractor and the second target. If the attentional blink represents a mechanism that is fixed and consistently fails at a single stage of processing, then manipulations of task difficulty should not affect distractor processing. However, if the attentional blink represents a more multifaceted and flexible mechanism, then task difficulty should modulate distractor processing. The results revealed that distractor processing during the AB was attenuated under high task difficulty. In addition, unlike previous studies, we failed to find a correlation between distractor processing and the severity of the attentional blink. Using a simulation, we demonstrate that the previously reported correlations may have been spurious and due to using variables that were not independent. Overall, the present results support the conclusion that the selectivity of attention during the AB is flexible and depends on the structure and demands of the task.

Highlights

  • Given the complex dynamics of the external world, the human brain requires flexible mechanisms that can efficiently represent and process information required for successful goaldirected actions

  • We present the results of the correlation between the prime effect and the attentional blink (AB) magnitude using methods that ensure the variables do not share variance

  • The primary purpose of the present work was to test the flexibility of selective attention during the AB by investigating whether distractor suppression is modulated by task demands

Read more

Summary

Introduction

Given the complex dynamics of the external world, the human brain requires flexible mechanisms that can efficiently represent and process information required for successful goaldirected actions. Over a century’s worth of research has converged on the notion that selective attention is one such flexible and multifaceted mechanism that can operate at multiple levels of processing and in sensory, perceptual, and cognitive domains depending on the task at hand.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call