Abstract
Thermal shrinkage of the added material can distort the manufactured part and generate residual stresses. Experiments are carried out on growing the beams of rectangular cross section. The beams bend with formation of a concave top surface. The distortion is characterized by the curvature radius. The curvature radius significantly increases with the beam height, however, its variation with the layer thickness is within the experimental uncertainty. The proposed mathematical model assumes sequential addition of thermally expanded elastic layers. It explains the experiments and indicates the existence of finite limits for the stress and the deformation fields and the curvature radius at small layer thickness. The proposed model can be applied to predict residual stresses and deformations arising in complicated parts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.