Abstract

Distortional buckling of axially compressed columns of box-like composite cross sections with and without internal diaphragms is investigated in the framework of one-dimensional theory. The channel members are composed of unidirectional fibre-reinforced laminate. Two approaches to the member orthotropic material are applied: homogenization based on the theory of mixture and periodicity cells, and homogenization based on the Voigt–Reuss hypothesis. The principle of stationary total potential energy is applied to derive the governing differential equation. The obtained buckling stress is valid in the linear elastic range of column material behaviour. Numerical examples address simply supported columns, and analytical critical stress formulas are derived. The analytical and FEM solutions are compared, and sufficient accuracy of the results is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.