Abstract
"We study the distortion features of homeomorphisms of Sobolev class $W^{1,1}_{\rm loc}$ admitting integrability for $p$-outer dilatation. We show that such mappings belong to $W^{1,n-1}_{\rm loc},$ are differentiable almost everywhere and possess absolute continuity in measure. In addition, such mappings are both ring and lower $Q$-homeomorphisms with appropriate measurable functions $Q.$ This allows us to derive various distortion results like Lipschitz, H\""older, logarithmic H\""older continuity, etc. We also establish a weak bounded variation property for such class of homeomorphisms."
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.