Abstract
This paper presents a generic framework solution for minimizing video distortion of all multiple video streams transmitted over 802.11e wireless networks, including intelligent packet scheduling and channel access differentiation mechanisms. A distortion prediction model designed to capture the multireferenced frame coding characteristic of H.264/AVC encoded videos is used to predetermine the distortion importance of each video packet in all streams. Two intelligent scheduling algorithms are proposed: the “even-loss distribution,” where each video sender is experiencing the same loss and the “greedy-loss distribution” packet scheduling, where selected packets are dropped over all streams, ensuring that the most significant video stream in terms of picture context and quality characteristics will experience minimum losses. The proposed model has been verified with actual distortion measurements and has been found more accurate than the “additive distortion” model that omits the correlation among lost frames. The paper includes analytical and simulation results from the comparison of both schemes and from their comparison to the simplified additive model, for different video sequences and channel conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.