Abstract
The temporal envelope profile and the phase of a steady-state pulse propagating through a resonant medium in the presence of nonresonant nonlinearity are derived. The formation of solitonlike pulses takes place as a result of the balance of the self-phase modulation generated by nonresonant nonlinearity and the nonlinear resonant group-velocity dispersion induced by the self-induced-transparency effect in a resonant medium. Self-phase-modulation action leads to distortion of the pulse when its power and inverse duration exceed the critical values Pcr and τcr-1. We show the destructive role of self-phase modulation in the case of self-induced-transparency pulse generation in a laser with erbium-doped fiber as an intracavity coherent absorber.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Optics Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.