Abstract

AbstractWe consider liquid metal flow in a square duct with electrically insulating walls under the influence of a magnetic point dipole using three‐dimensional direct numerical simulations with a finite‐difference method. The dipole acts as a magnetic obstacle. The Lorentz force on the magnet is sensitive to the velocity distribution that is influenced by the magnetic field. The flow transformation by an inhomogeneous local magnetic field is essential for obtaining velocity information from the measured forces. In this paper we present a numerical simulation of a spatially developing flow in a duct with laminar inflow and periodic boundary conditions. (© 2012 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.