Abstract

Aerial access networks have been envisioned as a promising 6G solution to enhance the ground communication systems in both coverage and capacity. To better utilize the spectrum and fully explore different channel characteristics, this paper constructs an integrated network comprising the High Altitude Platform (HAP) and Unmanned Air Vehicles (UAVs) with the Non-Orthogonal Multiple Access (NOMA) technology. In order to improve the transmission quality of images and videos, a power management scheme is proposed to minimize the distortion of the transmissions from the HAP and UAVs to the terminals. The power control is formulated as a non-convex problem constrained by the maximal transmit power and the minimal terminal rate requirements. The variable substitution and the first-order Tailor’s expansion is used to transform it into a sequence of convex problems, which are subsequently solved through the gradient projection method. Simulation demonstrates the signal distortion and error rate improvement achieved by the proposed algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.