Abstract

With application of 3T magnetic resonance imaging (MRI) to functional neurosurgery procedures and given the inherent requirement of millimetric precision, the need to develop a method for correction of geometric image distortion emerged. The aim of this study was to demonstrate clinical safety and practical viability of a correction protocol in patients scheduled to undergo stereotactic procedures using 3T MRI. This prospective study comprised 20 patients scheduled to undergo computed tomography (CT) stereotactic functional procedures or encephalic brain lesion biopsies. The CT images were references for MRI geometric accuracy calculations. For each scan, 2 images were obtained: normal and reversed images. Eight distinct points on CT and MRI were selected summing 152 points that were based on a power analysis calculation value >0.999. One patient was excluded because of the inability to find reliable common landmark points on CT and MRI. The distortion range was 0-5.6 mm and increased proportionally with stereotactic isocenter distance, meaning the distortion was greater in the periphery. After correction, the minimum and maximum distortion found was 0 mm and 3.5 mm, respectively. There was no significant difference between CT and MRI corrected x-coordinates (P > 0.05). The proposed method can satisfactorily correct geometric distortions in clinical 3T MRI studies. Clinical use of the technique can be practical and efficient after software automation of the process. The method can be applied to all spin-echo MRI sequences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.