Abstract

A Distortion Contribution Analysis (DCA) determines the contributions of each sub-circuit to the total distortion generated by an electronic circuit in a simulation. The results of the DCA allow the designer of the circuit to effectively reduce the distortion. Recently, a DCA based on the Best Linear Approximation (BLA) was introduced. In this approach, the non-linear subcircuits are modelled using a linear approximation. The nonlinear distortion is represented as an additive noise source. Combining the BLA with the concepts of a noise analysis yields a DCA that works with realistic, modulated excitation signals instead of a one or two-tone excitation. Up till now, BLA-based DCA has only been applied to weakly non-linear circuits. In this paper, it is extended and applied to a strongly non-linear circuit.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.