Abstract

Image distortion is a main challenge for tasks on panoramas. In this work, we propose a Distortion-Aware Monocular Omnidirectional (DAMO) network to estimate dense depth maps from indoor panoramas. First, we introduce a distortion-aware module to extract semantic features from omnidirectional images. Specifically, we exploit deformable convolution to adjust its sampling grids to geometric distortions on panoramas. We also utilize a strip pooling module to sample against horizontal distortion introduced by inverse gnomonic projection. Second, we introduce a plug-and-play spherical-aware weight matrix for our loss function to handle the uneven distribution of areas projected from a sphere. Experiments on the 360D dataset show that the proposed method can effectively extract semantic features from distorted panoramas and alleviate the supervision bias caused by distortion. It achieves the state-of-the-art performance on the 360D dataset with high efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.