Abstract
10 Induction hardened discs with two initial hardness levels were used for exploring the influences of the variation of initial hardness as well as induction hardening (IH) recipes on the heat treatment distortions and hardening depth. The results show that for the same initial hardness, the larger the energy input, the higher the distortion size as well as the hardening depth. For a given induction hardening recipe, the increase in initial hardness leads to a deeper hardening depth but a smaller distortion. One disc was selected for the residual stress investigation in three orthogonal directions by neutron diffraction (ND). The corresponding stress-free lattice spacing d0 was measured from the same material using both ND and X-ray diffraction (XRD) methods. The ND results show that the variation of d0 in the hardened layer is significant and should be taken into account for stress calculation. However, regarding the core region, the d0 value measured by XRD is more reliable. Accordingly, a combination of the ND-measured d0 profiles in the hardened layer and the XRD-measured d0 value in the core was adopted for the determination of residual stress distributions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.