Abstract

An analytical model based on a theoretical model established in the previous work (part 1) is developed. The analytical model considers the particular case of an instantaneous high-density heat source acting on a thin pre-stressed plate. It calculates the plastic strain and the area of the zone of plastic deformation. A theoretical study is performed in order to quantify the major factors that influence the plastic strain formation. Furthermore, the work presents a calculation procedure for distortion analysis of large and complex structures, intended to be used for solving industrial tasks. The calculation procedure consists of a combination of the analytical solution and an elastic finite element analysis with the aid of the inherent strain approach. Various aspects of its application are also discussed. The calculation procedure is finally explained using a simple example. Its reliability and practicability are demonstrated through verification and validation studies. The work is dedicated to the thermal straightening of thin-walled welded structures; however, it can also be related to other processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.