Abstract
In 1925, Gershenson started laboratory cultures from 19 female Drosophila obscura that were collected from a forest near Moscow. After recounting his difficulties raising the flies (partial success achieved with a diet of potatoes and fermented raisins), he noted that progeny from most cultures contained an approximately equal sex ratio [1]. Several cultures, however, yielded progeny with highly skewed ratios, such as one group with 87 females and only 7 males. These “deviations from the normal sex-ratio were so considerable that it seemed impossible to explain them by accidental causes,” he wrote. Similar observations had been made by others, but Gershenson went on to perform a number of experiments and reached three important conclusions. First, sex-ratio distortion (referred to hereafter as sex-ratio) was associated with the X chromosome. Second, the expression of the phenotype was sex-limited, because it only occurred in the progeny of males carrying the causal X chromosome. And third, the low numbers of males did not appear to be caused by preferential death of male zygotes or their transformation into females. Rather, he concluded that “the greater part of the spermatozoa determining the development of males do not participate in fertilization”. Because females have two X chromosomes and males are XY, he further suggested that either Y-bearing sperm are less frequently produced by affected males than X-bearing sperm, or that Y-bearing sperm are less capable of achieving fertilization.
Highlights
In 1925, Gershenson started laboratory cultures from 19 female Drosophila obscura that were collected from a forest near Moscow
In this issue of PLoS Biology, Yun Tao and colleagues report the discovery and identity of an X-linked sex-ratio distorter from Drosophila simulans called Dox (Distorter on the X) [2]
Such phenotypes occurred when segments of the Drosophila sechellia genome were introgressed into its sister species, D. simulans [5]
Summary
In 1925, Gershenson started laboratory cultures from 19 female Drosophila obscura that were collected from a forest near Moscow. In this issue of PLoS Biology, Yun Tao and colleagues report the discovery and identity of an X-linked sex-ratio distorter from Drosophila simulans called Dox (Distorter on the X) [2]. The close association of distorting and suppressing genes, though not appreciated by Gershenson, is key to understanding the genetic basis and evolutionary dynamics of sex-ratio systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.