Abstract

The adaptation of an observer's saccadic eye movements to artificial post-saccadic visual error can lead to perceptual mislocalization of individual, transient visual stimuli. In this study, we demonstrate that simultaneous saccadic adaptation to a consistent error pattern across a large number of saccade vectors is accompanied by corresponding spatial distortions in the perception of persistent objects. To induce this adaptation, we artificially introduced several post-saccadic error patterns, which led to a systematic distortion in participants' oculomotor space and a corresponding distortion in their perception of the relative dimensions of a cross-figure. The results indicate a tight coupling between the oculomotor and visual-perceptual spaces that is not limited to misperception of individual visual locations but also affects metrics in the visual-perceptual space. This coupling suggests that our visual perception is continuously recalibrated by the post-saccadic error signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.