Abstract
Two dimensional (2D) materials possessing ferroelectric/ferromagnetic orders and especially low-magnetic-field controlled magnetoelectricity have great promise in spintronics and multistate data storage. However, ferroelectric and magnetoelectric (ME) dipoles in the atom-thick 2D materials are difficult to be realized due to structural inversion symmetry, thermal actuation, and depolarized field. To overcome these difficulties, the monolayer structure must possess an in-plane inversion asymmetry in order to provide out-of-plane ferroelectric polarization. Herein, crystal chemistry is adopted to engineer specific atomic displacement in monolayer ReS2 to change the crystal symmetry to induce out-of-plane ferroelectric polarization at room temperature. The cationic Re vacancy in the atom-displaced ReS2 monolayer causes spin polarization of two immediate neighbor sulfur atoms to generate magnetic ordering, and the ferroelectric distortion near the Re vacancy locally tunes the ferromagnetic order thereby triggering low-magnetic-field controlled ME polarization at about 28 K. As a result, 2D ME coupling multiferroics is achieved. Our results not only reveal a design methodology to attain coexistence of ferroelectric and ferromagnetic orders in 2D materials but also provide insights into magnetoelectricity in 2D materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.