Abstract

The problem of unambiguous state discrimination consists of determining which of a set of known quantum states a particular system is in. One is allowed to fail, but not to make a mistake. The optimal procedure is the one with the lowest failure probability. This procedure has been extended to bipartite states where the two parties, Alice and Bob, are allowed to manipulate their particles locally and communicate classically in order to determine which of two possible two-particle states they have been given. The failure probability of this local procedure has been shown to be the same as if the particles were together in the same location. Here we examine the effect of restricting the classical communication between the parties, either allowing none or eliminating the possibility that one party's measurement depends on the result of the other party's. These issues are studied for two-qubit states, and optimal procedures are found. In some cases the restrictions cause increases in the failure probability, but in other cases they do not. Applications of these procedures, in particular to secret sharing, are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.