Abstract

The aim of this work was to evaluate the capability of diffuse reflectance spectroscopy to distinguish malignant liver tissues from surrounding tissues and to determine whether an extended wavelength range (450-1550 nm) offers any advantages over using the conventional wavelength range. Furthermore, multivariate analysis combined with a machine learning algorithm, either linear discriminant analysis or the more advanced support vector machine, was used to discriminate between and classify freshly excised human liver specimens from 18 patients. Tumors were distinguished from surrounding liver tissues with a sensitivity of 99%, specificity of 100%, classification rate of 100% and a Matthews correlation coefficient of 100% using the extended wavelength range and a combination of principal component analysis and support vector techniques. The results indicate that this technology may be useful in clinical applications for real-time tissue diagnostics of tumor margins where rapid classification is important.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.