Abstract
One way to improve power conversion efficiency (PCE) of polymer based bulk‐heterojunction (BHJ) photovoltaic cells is to increase the open circuit voltage (V oc). Replacing PCBM with bis‐adduct fullerenes significantly improves V oc and the PCE in devices based on the conjugated polymer poly(3‐hexyl thiophene) (P3HT). However, for the most promising low band‐gap polymer (LBP) system, replacing PCBM with ICBA results in poor short‐circuit current (J sc) and PCE although V oc is significantly improved. The optimization of the morphology of as‐cast LBP/bis‐fullerene BHJ photovoltaics is attempted by adding a co‐solvent to the polymer/fullerene solution prior to film deposition. Varying the solubility of polymer and fullerene in the co‐solvent, bulk heterojunctions are fabricated with no change of polymer ordering, but with changes in fullerene phase separation. The morphologies of the as‐cast samples are characterized by small angle neutron scattering and neutron reflectometry. A homogenous dispersion of ICBA in LBP is found in the samples where the co‐solvent is selective to the polymer, giving poor device performance. Aggregates of ICBA are formed in samples where the co‐solvent is selective to ICBA. The resultant morphology improves PCE by up to 246%. A quantitative analysis of the neutron data shows that the interfacial area between ICBA aggregates and its surrounding matrix is improved, facilitating charge transport and improving the PCE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.