Abstract
Transport of single molecules in nanochannels or nanoslits might be used to identify them via their transit (flight) times. In this paper, we present molecular dynamics simulations of transport of single deoxynucleotide 5'-monophoshates (dNMP) in aqueous solution under pressure-driven flow, to average velocities between 0.4 and 1.0 m/s, in 3 nm wide slits with hydrophobic walls. The simulation results show that, while moving along the slit, the mononucleotides are adsorbed and desorbed from the walls multiple times. For the simulations, the estimated minimum slit length required for separation of the dNMP flight time distributions is about 5.9 μm, and the minimum analysis time per dNMP is about 10 μs. These are determined by the nature of the nucleotide-wall interactions, channel width, and by the flow characteristics. A simple analysis using realistic dNMP velocities shows that, in order to reduce the effects of diffusional broadening and keep the analysis time per dNMP reasonably small, the nucleotide velocity should be relatively high. Tailored surface chemistry could lead to further reduction of the analysis time toward its minimum value for a given driving force.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.