Abstract
Asset price volatility appears to be more persistent than can be captured by individual, short memory, autoregressive or moving average components. Fractional integration offers a very parsimonious and tempting formulation of this long memory property of volatility but other explanations such as structural models (aggregates of several autoregressive components) are possible. Given the ability of the latter to mimic the former, we investigate the extent to which it is possible to distinguish short from long memory volatility specifications. For a likelihood ratio test in the spectral domain, we investigate size and power characteristics by Monte Carlo simulation. Finally applying the same test to Sterling/Dollar returns, we draw conclusions about the minimum number of structural factors that must be present to mimic the long memory volatility properties that are empirically observed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.