Abstract

AbstractA technique combining ion mobility spectrometry‐mass spectrometry (IMS‐MS) and supercharging electrospray ionization (ESI) has been demonstrated to differentiate protein chemical topology effectively. Incorporating as many charges as possible into proteins via supercharging ESI allows the protein chains to be largely unfolded and stretched, revealing their hidden chemical topology. Different chemical topologies result in differing geometrical sizes of the unfolded proteins due to constraints in torsional rotations in cyclic domains. By introducing new topological indices, such as the chain‐length‐normalized collision cross‐section (CCS) and the maximum charge state (zM) in the extensively unfolded state, we were able to successfully differentiate various protein chemical topologies, including linear chains, ring‐containing topologies (lasso, tadpole, multicyclics, etc.), and mechanically interlocked rings, like catenanes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.