Abstract

BackgroundNontuberculous mycobacterial lung disease (NTM-LD) and Mycobacterium tuberculosis lung disease (MTB-LD) have similar clinical characteristics. Therefore, NTM-LD is sometimes incorrectly diagnosed with MTB-LD and treated incorrectly. To solve these difficulties, we aimed to distinguish the two diseases in chest X-ray images using deep learning technology, which has been used in various fields recently.MethodsWe retrospectively collected chest X-ray images from 3314 patients infected with Mycobacterium tuberculosis (MTB) or nontuberculosis mycobacterium (NTM). After selecting the data according to the diagnostic criteria, various experiments were conducted to create the optimal deep learning model. A performance comparison was performed with the radiologist. Additionally, the model performance was verified using newly collected MTB-LD and NTM-LD patient data.ResultsAmong the implemented deep learning models, the ensemble model combining EfficientNet B4 and ResNet 50 performed the best in the test data. Also, the ensemble model outperformed the radiologist on all evaluation metrics. In addition, the accuracy of the ensemble model was 0.85 for MTB-LD and 0.78 for NTM-LD on an additional validation dataset consisting of newly collected patients.ConclusionsIn previous studies, it was known that it was difficult to distinguish between MTB-LD and NTM-LD in chest X-ray images, but we have successfully distinguished the two diseases using deep learning methods. This study has the potential to aid clinical decisions if the two diseases need to be differentiated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.