Abstract

Falls are the number one cause of injury in older adults. An individual's risk for falls depends on his or her frequency of imbalance episodes, and ability to recover balance following these events. However, there is little direct evidence on the frequency and circumstances of imbalance episodes (near falls) in older adults. Currently, there is rapid growth in the development of wearable fall monitoring systems based on inertial sensors. The utility of these systems would be enhanced by the ability to detect near-falls. In the current study, we conducted laboratory experiments to determine how the number and location of wearable inertial sensors influences the accuracy of a machine learning algorithm in distinguishing near-falls from activities of daily living (ADLs).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.