Abstract
The ability to detect gas molecule and assign a concentration offers an inventive solution in the field of plasma integrated with machine learning. The most important finding of this work is firstly, to develop an algorithm for gas-molecule identification using three different hydrocarbons (CH4, C2H2, C2H6) and secondly, organize a model for detecting gas concentration (classification). For this reason, initially eight different gases evaluated. The study confirms the present of the unique emission lines as a gas indicator, i.e., a wavelength peak related to hydrocarbons identified via increasing in C x H y concentration. By means of unique variable important in projection, hydrocarbons can be distinguished. Our proposed Chemometric analysis strategy examined on >1000 samples and results development of suitable techniques that are sufficiently rapid, accurate and innovative. This demonstrates the potential for real-time, portable, and continuous monitoring of trace gases with potential applications in medical, environmental, and industrial gas sensing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.