Abstract

Ecological cycles are ubiquitous in nature and have triggered ecologists’ interests for decades. Deciding whether a cyclic ecological variable, such as population density, is part of an intrinsically emerging limit cycle or simply driven by a varying environment is still an unresolved issue, particularly when the only available information is in the form of a recorded time series. We investigate the possibility of discerning intrinsic limit cycles from oscillations forced by a cyclic environment based on a single time series. We argue that such a distinction is possible because of the fundamentally different effects that perturbations have on the focal system in these two cases. Using a set of generic mathematical models, we show that random perturbations leave characteristic signatures on the power spectrum and autocovariance that differ between limit cycles and forced oscillations. We quantify these differences through two summary variables and demonstrate their predictive power using numerical simulations. Our work demonstrates that random perturbations of ecological cycles can give valuable insight into the underlying deterministic dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call