Abstract
Exploring nonequilibrium hot carriers from plasmonic metal nanostructures is a dynamic field in optoelectronics, with applications including photochemical reactions for solar fuel generation. The hot carrier injection mechanism and the reaction rate are highly impacted by the metal/molecule interaction. However, determining the primary type of reaction and thus the injection mechanism of hot carriers has remained elusive. In this work, we reveal an electron injection mechanism deviating from a purely outer-sphere process for the reduction of ferricyanide redox molecule in a gold/p-type gallium nitride (Au/p-GaN) photocathode system. Combining our experimental approach with ab initio simulations, we discovered that an efficient inner-sphere transfer of low-energy electrons leads to an enhancement in the photocathode device performance in the interband regime. These findings provide important mechanistic insights, showing our methodology as a powerful tool for analyzing and engineering hot-carrier-driven processes in plasmonic photocatalytic systems and optoelectronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.