Abstract

Worldwide, 140 million ha are devoted to rice cultivation, mostly in developing countries of the tropics and subtropics where malaria still constitutes a serious human health problem. Because rice fields are flood-irrigated on a semi-permanent basis during each growing season, they provide an ideal breeding habitat for a number of potential mosquito vectors of malaria. One of these vectors, Anopheles freeborni, is distributed throughout nearly 240 000 ha of irrigated rice in northern and central California, and may serve as a model for the study of rice field mosquito population dynamics using spectral and spatial information. Analysis of field data revealed that rice fields with rapid early season vegetation canopy development, located near livestock pastures (i.e. bloodmeal sources), had greater mosquito larval populations than fields with more slowly developing vegetation canopies located further from pastures. Remote sensing reflectance measurements of early season rice canopy development and geographic information system (GIS) measurements of distance to livestock pasture were combined to distinguish between high and low mosquito-producing rice fields. These distinctions were made with 90% accuracy nearly 2 months before anopheline larval populations peaked.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.