Abstract

We have developed a strategy for distinguishing between small-angle X-ray scattering (SAXS) from gas-phase species and newly formed nanoparticles in mixed gas- and particle-phase reacting flows. This methodology explicitly accounts for temperature-dependent scattering from gases. We measured SAXS in situ in a sooting linear laminar partially premixed co-flow ethylene/air diffusion flame. The scattering signal demonstrates a downward curvature as a function of the momentum transfer (q) at q values of 0.2-0.57 Å-1. The q-dependent curvature is consistent with the Debye equation and the independent-atom model for gas-phase scattering. This behavior can also be modeled using the Guinier approximation and could be characterized as a Guinier knee for gas-phase scattering. The Guinier functional form can be fit to the scattering signal in this q range without a priori knowledge of the gas-phase composition, enabling estimation of the gas-phase contribution to the scattering signal while accounting for changes in the gas-phase composition and temperature. We coupled the SAXS measurements with in situ temperature measurements using coherent anti-Stokes Raman spectroscopy. This approach to characterizing the gas-phase SAXS signal provides a physical basis for distinguishing among the contributions to the scattering signal from the instrument function, flame gases, and nanoparticles. The results are particularly important for the analysis of the SAXS signal in the q range associated with particles in the size range of 1-6 nm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call